What you should learn from Recitation 3: First order linear ODE

Fei Qi

Rutgers University
fq15@math.rutgers.edu

February 27, 2014

Disclaimer

- These slides are designed exclusively for students attending section 1 , 2 and 3 for the course 640:244 in Fall 2013. The author is not responsible for consequences of other usages.
- These slides may suffer from errors. Please use them with your own discretion since debugging is beyond the author's ability.

How to play direct substitution

- Knowing that

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C
$$

How to play direct substitution

- Knowing that

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C
$$

How to get, for a general positive number a,

$$
\int \frac{d x}{\sqrt{a^{2}-x^{2}}}
$$

How to play direct substitution

- Knowing that

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C
$$

How to get, for a general positive number a,

$$
\int \frac{d x}{\sqrt{a^{2}-x^{2}}}
$$

- Use substitution:

$$
\int \frac{d x}{\sqrt{a^{2}-x^{2}}}
$$

How to play direct substitution

- Knowing that

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C
$$

How to get, for a general positive number a,

$$
\int \frac{d x}{\sqrt{a^{2}-x^{2}}}
$$

- Use substitution:

$$
\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\int \frac{d x}{a \sqrt{1-\left(\frac{x}{a}\right)^{2}}}
$$

How to play direct substitution

- Knowing that

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C
$$

How to get, for a general positive number a,

$$
\int \frac{d x}{\sqrt{a^{2}-x^{2}}}
$$

- Use substitution:

$$
\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\int \frac{d x}{a \sqrt{1-\left(\frac{x}{a}\right)^{2}}}=\int \frac{d \frac{x}{a}}{\sqrt{1-\left(\frac{x}{a}\right)^{2}}}
$$

How to play direct substitution

- Knowing that

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C
$$

How to get, for a general positive number a,

$$
\int \frac{d x}{\sqrt{a^{2}-x^{2}}}
$$

- Use substitution:

$$
\begin{aligned}
\int \frac{d x}{\sqrt{a^{2}-x^{2}}} & =\int \frac{d x}{a \sqrt{1-\left(\frac{x}{a}\right)^{2}}}=\int \frac{d \frac{x}{a}}{\sqrt{1-\left(\frac{x}{a}\right)^{2}}} \\
& =\arcsin \frac{x}{a}+C
\end{aligned}
$$

Another example of direct substitution

- Knowing

$$
\int \frac{d x}{1+x^{2}}=\arctan x+C
$$

Another example of direct substitution

- Knowing

$$
\int \frac{d x}{1+x^{2}}=\arctan x+C
$$

how to get, for a general positive number a,

$$
\int \frac{d x}{a^{2}+x^{2}}
$$

Another example of direct substitution

- Knowing

$$
\int \frac{d x}{1+x^{2}}=\arctan x+C
$$

how to get, for a general positive number a,

$$
\int \frac{d x}{a^{2}+x^{2}}
$$

- Again use substitution:

$$
\int \frac{d x}{a^{2}+x^{2}}
$$

Another example of direct substitution

- Knowing

$$
\int \frac{d x}{1+x^{2}}=\arctan x+C
$$

how to get, for a general positive number a,

$$
\int \frac{d x}{a^{2}+x^{2}}
$$

- Again use substitution:

$$
\int \frac{d x}{a^{2}+x^{2}}=\int \frac{d x}{a^{2}\left(1+\frac{x^{2}}{a^{2}}\right)}
$$

Another example of direct substitution

- Knowing

$$
\int \frac{d x}{1+x^{2}}=\arctan x+C
$$

how to get, for a general positive number a,

$$
\int \frac{d x}{a^{2}+x^{2}}
$$

- Again use substitution:

$$
\int \frac{d x}{a^{2}+x^{2}}=\int \frac{d x}{a^{2}\left(1+\frac{x^{2}}{a^{2}}\right)}=\int \frac{d \frac{x}{a}}{a\left(1+\left(\frac{x}{a}\right)^{2}\right.}
$$

Another example of direct substitution

- Knowing

$$
\int \frac{d x}{1+x^{2}}=\arctan x+C
$$

how to get, for a general positive number a,

$$
\int \frac{d x}{a^{2}+x^{2}}
$$

- Again use substitution:

$$
\begin{aligned}
\int \frac{d x}{a^{2}+x^{2}} & =\int \frac{d x}{a^{2}\left(1+\frac{x^{2}}{a^{2}}\right)}=\int \frac{d \frac{x}{a}}{a\left(1+\left(\frac{x}{a}\right)^{2}\right.} \\
& =\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C .
\end{aligned}
$$

Exercises for the technique

- Knowing that

$$
\int \frac{d x}{1-x^{2}}=\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|+C
$$

Exercises for the technique

- Knowing that

$$
\int \frac{d x}{1-x^{2}}=\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|+C
$$

compute for general positive numbers a and b the integral

$$
\int \frac{d x}{a^{2}-b^{2} x^{2}}
$$

Exercises for the technique

- Knowing that

$$
\int \frac{d x}{1-x^{2}}=\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|+C
$$

compute for general positive numbers a and b the integral

$$
\int \frac{d x}{a^{2}-b^{2} x^{2}}
$$

- Prove that

$$
\int \frac{d x}{\sqrt{1+x^{2}}}=\ln \left(x+\sqrt{x^{2}+1}\right)
$$

Exercises for the technique

- Knowing that

$$
\int \frac{d x}{1-x^{2}}=\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|+C
$$

compute for general positive numbers a and b the integral

$$
\int \frac{d x}{a^{2}-b^{2} x^{2}}
$$

- Prove that

$$
\int \frac{d x}{\sqrt{1+x^{2}}}=\ln \left(x+\sqrt{x^{2}+1}\right)
$$

and use direct substitution to get

$$
\int \frac{d x}{\sqrt{a^{2}+b^{2} x^{2}}}
$$

Quiz Problem 1

Find out the maximal interval

Quiz Problem 1

Find out the maximal interval where for the initial value problem

$$
\left\{\begin{array}{l}
t y^{\prime}+\frac{2 t-1}{t^{2}-4} y=\frac{3 t-5}{2 t+1} \\
y(1)=0
\end{array}\right.
$$

Quiz Problem 1

Find out the maximal interval where for the initial value problem

$$
\left\{\begin{array}{l}
t y^{\prime}+\frac{2 t-1}{t^{2}-4} y=\frac{3 t-5}{2 t+1} \\
y(1)=0
\end{array}\right.
$$

there exists a unique solution.

Quiz Problem 1

Find out the maximal interval where for the initial value problem

$$
\left\{\begin{array}{l}
t y^{\prime}+\frac{2 t-1}{t^{2}-4} y=\frac{3 t-5}{2 t+1} \\
y(1)=0
\end{array}\right.
$$

there exists a unique solution.

- Remember: Before you do anything,

Quiz Problem 1

Find out the maximal interval where for the initial value problem

$$
\left\{\begin{array}{l}
t y^{\prime}+\frac{2 t-1}{t^{2}-4} y=\frac{3 t-5}{2 t+1} \\
y(1)=0
\end{array}\right.
$$

there exists a unique solution.

- Remember: Before you do anything, GET THE STANDARD FORM FIRST!

Quiz Problem 1

Find out the maximal interval where for the initial value problem

$$
\left\{\begin{array}{l}
t y^{\prime}+\frac{2 t-1}{t^{2}-4} y=\frac{3 t-5}{2 t+1} \\
y(1)=0
\end{array}\right.
$$

there exists a unique solution.

- Remember: Before you do anything, GET THE STANDARD FORM FIRST!

$$
y^{\prime}+\frac{2 t-1}{t\left(t^{2}-4\right)} y=\frac{3 t-5}{t(2 t+1)}
$$

Quiz Problem 1

- So we are looking for t 's

Quiz Problem 1

- So we are looking for t 's that makes $t\left(t^{2}-4\right)=0$ and $t(2 t+1)=0$.

Quiz Problem 1

- So we are looking for t 's that makes $t\left(t^{2}-4\right)=0$ and $t(2 t+1)=0$. And those points are $t=0, \pm 2,-1 / 2$.

Quiz Problem 1

- So we are looking for t 's that makes $t\left(t^{2}-4\right)=0$ and $t(2 t+1)=0$. And those points are $t=0, \pm 2,-1 / 2$.
- These 4 points tears the real line into 5 parts.

Quiz Problem 1

- So we are looking for t 's that makes $t\left(t^{2}-4\right)=0$ and $t(2 t+1)=0$. And those points are $t=0, \pm 2,-1 / 2$.
- These 4 points tears the real line into 5 parts. And the part containing 1 is (0,2).

Quiz Problem 1

- So we are looking for t 's that makes $t\left(t^{2}-4\right)=0$ and $t(2 t+1)=0$. And those points are $t=0, \pm 2,-1 / 2$.
- These 4 points tears the real line into 5 parts. And the part containing 1 is $(0,2)$. So $(0,2)$ is the interval we are looking for.

Quiz Problem 1

- So we are looking for t 's that makes $t\left(t^{2}-4\right)=0$ and $t(2 t+1)=0$. And those points are $t=0, \pm 2,-1 / 2$.
- These 4 points tears the real line into 5 parts. And the part containing 1 is $(0,2)$. So $(0,2)$ is the interval we are looking for.
- Challenging Exercise:

Quiz Problem 1

- So we are looking for t 's that makes $t\left(t^{2}-4\right)=0$ and $t(2 t+1)=0$. And those points are $t=0, \pm 2,-1 / 2$.
- These 4 points tears the real line into 5 parts. And the part containing 1 is $(0,2)$. So $(0,2)$ is the interval we are looking for.
- Challenging Exercise: Find the maximal interval

Quiz Problem 1

- So we are looking for t 's that makes $t\left(t^{2}-4\right)=0$ and $t(2 t+1)=0$. And those points are $t=0, \pm 2,-1 / 2$.
- These 4 points tears the real line into 5 parts. And the part containing 1 is $(0,2)$. So $(0,2)$ is the interval we are looking for.
- Challenging Exercise: Find the maximal interval where the initial value problem

$$
(\sin 2 t) y^{\prime}+(\tan 4 t) y=\frac{1}{t}, y(\pi / 4)=0
$$

Quiz Problem 1

- So we are looking for t 's that makes $t\left(t^{2}-4\right)=0$ and $t(2 t+1)=0$. And those points are $t=0, \pm 2,-1 / 2$.
- These 4 points tears the real line into 5 parts. And the part containing 1 is $(0,2)$. So $(0,2)$ is the interval we are looking for.
- Challenging Exercise: Find the maximal interval where the initial value problem

$$
(\sin 2 t) y^{\prime}+(\tan 4 t) y=\frac{1}{t}, y(\pi / 4)=0
$$

is guaranteed to have a unique solution.

Graded Homework Problem 2.4.10

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\left(t^{2}+y^{2}\right)^{3 / 2}
$$

Graded Homework Problem 2.4.10

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\left(t^{2}+y^{2}\right)^{3 / 2}
$$

- Recall

Graded Homework Problem 2.4.10

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\left(t^{2}+y^{2}\right)^{3 / 2}
$$

- Recall that Theorem 2.4.2 are satisfied for the equation

$$
y^{\prime}=f(t, y)
$$

Graded Homework Problem 2.4.10

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\left(t^{2}+y^{2}\right)^{3 / 2}
$$

- Recall that Theorem 2.4.2 are satisfied for the equation

$$
y^{\prime}=f(t, y)
$$

wherever BOTH $f(t, y)$

Graded Homework Problem 2.4.10

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\left(t^{2}+y^{2}\right)^{3 / 2}
$$

- Recall that Theorem 2.4.2 are satisfied for the equation

$$
y^{\prime}=f(t, y)
$$

wherever BOTH $f(t, y)$ AND $f_{y}(t, y)$

Graded Homework Problem 2.4.10

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\left(t^{2}+y^{2}\right)^{3 / 2}
$$

- Recall that Theorem 2.4.2 are satisfied for the equation

$$
y^{\prime}=f(t, y)
$$

wherever BOTH $f(t, y)$ AND $f_{y}(t, y)$ are continuous.

Graded Homework Problem 2.4.10

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\left(t^{2}+y^{2}\right)^{3 / 2}
$$

- Recall that Theorem 2.4.2 are satisfied for the equation

$$
y^{\prime}=f(t, y)
$$

wherever BOTH $f(t, y)$ AND $f_{y}(t, y)$ are continuous.

- When $f(t, y)=\left(t^{2}+y^{2}\right)^{3 / 2}$,

Graded Homework Problem 2.4.10

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\left(t^{2}+y^{2}\right)^{3 / 2}
$$

- Recall that Theorem 2.4.2 are satisfied for the equation

$$
y^{\prime}=f(t, y)
$$

wherever BOTH $f(t, y)$ AND $f_{y}(t, y)$ are continuous.

- When $f(t, y)=\left(t^{2}+y^{2}\right)^{3 / 2}$, one can see that $f_{y}(t, y)=\frac{3}{2}\left(t^{2}+y^{2}\right)^{3 / 2}$.

Graded Homework Problem 2.4.10

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\left(t^{2}+y^{2}\right)^{3 / 2}
$$

- Recall that Theorem 2.4.2 are satisfied for the equation

$$
y^{\prime}=f(t, y)
$$

wherever BOTH $f(t, y)$ AND $f_{y}(t, y)$ are continuous.

- When $f(t, y)=\left(t^{2}+y^{2}\right)^{3 / 2}$, one can see that $f_{y}(t, y)=\frac{3}{2}\left(t^{2}+y^{2}\right)^{3 / 2}$. Both f and f_{y} are continuous on all the points on ty-plane.

Graded Homework Problem 2.4.10

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\left(t^{2}+y^{2}\right)^{3 / 2}
$$

- Recall that Theorem 2.4.2 are satisfied for the equation

$$
y^{\prime}=f(t, y)
$$

wherever BOTH $f(t, y)$ AND $f_{y}(t, y)$ are continuous.

- When $f(t, y)=\left(t^{2}+y^{2}\right)^{3 / 2}$, one can see that
$f_{y}(t, y)=\frac{3}{2}\left(t^{2}+y^{2}\right)^{3 / 2}$. Both f and f_{y} are continuous on all the points on ty-plane. So Theorem 2.4.2 are satisfied everywhere.

A slightly more difficult problem

A slightly more difficult problem

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied

A slightly more difficult problem

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\sqrt{y+t-1}
$$

A slightly more difficult problem

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\sqrt{y+t-1}
$$

- The function $f(t, y)=\sqrt{y+t-1}$ is not defined on the points (t, y)

A slightly more difficult problem

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\sqrt{y+t-1}
$$

- The function $f(t, y)=\sqrt{y+t-1}$ is not defined on the points (t, y) such that $y+t-1<0$.

A slightly more difficult problem

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\sqrt{y+t-1}
$$

- The function $f(t, y)=\sqrt{y+t-1}$ is not defined on the points (t, y) such that $y+t-1<0$.
- The partial derivative of $f(t, y)$ to y

A slightly more difficult problem

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\sqrt{y+t-1}
$$

- The function $f(t, y)=\sqrt{y+t-1}$ is not defined on the points (t, y) such that $y+t-1<0$.
- The partial derivative of $f(t, y)$ to y is

$$
f_{y}(t, y)=\frac{1}{2 \sqrt{y+t-1}}
$$

A slightly more difficult problem

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\sqrt{y+t-1}
$$

- The function $f(t, y)=\sqrt{y+t-1}$ is not defined on the points (t, y) such that $y+t-1<0$.
- The partial derivative of $f(t, y)$ to y is

$$
f_{y}(t, y)=\frac{1}{2 \sqrt{y+t-1}}
$$

which is not defined on the points (t, y)

A slightly more difficult problem

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\sqrt{y+t-1}
$$

- The function $f(t, y)=\sqrt{y+t-1}$ is not defined on the points (t, y) such that $y+t-1<0$.
- The partial derivative of $f(t, y)$ to y is

$$
f_{y}(t, y)=\frac{1}{2 \sqrt{y+t-1}}
$$

which is not defined on the points (t, y) such that $y+t-1 \leq 0$.

A slightly more difficult problem

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\sqrt{y+t-1}
$$

- The function $f(t, y)=\sqrt{y+t-1}$ is not defined on the points (t, y) such that $y+t-1<0$.
- The partial derivative of $f(t, y)$ to y is

$$
f_{y}(t, y)=\frac{1}{2 \sqrt{y+t-1}}
$$

which is not defined on the points (t, y) such that $y+t-1 \leq 0$.

- Therefore the points where Theorem 2.4.2 works can be described

A slightly more difficult problem

State where in the ty-plane the hypothesises of Theorem 2.4.2 are satisfied for

$$
y^{\prime}=\sqrt{y+t-1}
$$

- The function $f(t, y)=\sqrt{y+t-1}$ is not defined on the points (t, y) such that $y+t-1<0$.
- The partial derivative of $f(t, y)$ to y is

$$
f_{y}(t, y)=\frac{1}{2 \sqrt{y+t-1}}
$$

which is not defined on the points (t, y) such that $y+t-1 \leq 0$.

- Therefore the points where Theorem 2.4.2 works can be described by the set

$$
\{(t, y): y+t-1>0\}
$$

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability.

- Write the ODE as

$$
y^{\prime}=y^{2}(y-2)(y-3)
$$

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability.

- Write the ODE as

$$
y^{\prime}=y^{2}(y-2)(y-3)
$$

and it is immediate that the equilibrium solutions are $y=0, y=2$ and $y=3$.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability.

- Write the ODE as

$$
y^{\prime}=y^{2}(y-2)(y-3)
$$

and it is immediate that the equilibrium solutions are $y=0, y=2$
and $y=3$.

- If $y>3$,

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability.

- Write the ODE as

$$
y^{\prime}=y^{2}(y-2)(y-3)
$$

and it is immediate that the equilibrium solutions are $y=0, y=2$ and $y=3$.

- If $y>3$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability.

- Write the ODE as

$$
y^{\prime}=y^{2}(y-2)(y-3)
$$

and it is immediate that the equilibrium solutions are $y=0, y=2$ and $y=3$.

- If $y>3$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=3$ is unstable from above.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability.

- Write the ODE as

$$
y^{\prime}=y^{2}(y-2)(y-3)
$$

and it is immediate that the equilibrium solutions are $y=0, y=2$
and $y=3$.

- If $y>3$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=3$ is unstable from above.
- If $2<y<3$,

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability.

- Write the ODE as

$$
y^{\prime}=y^{2}(y-2)(y-3)
$$

and it is immediate that the equilibrium solutions are $y=0, y=2$ and $y=3$.

- If $y>3$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=3$ is unstable from above.
- If $2<y<3$, then $y^{\prime}=y^{2}(y-2)(y-3)<0$.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability.

- Write the ODE as

$$
y^{\prime}=y^{2}(y-2)(y-3)
$$

and it is immediate that the equilibrium solutions are $y=0, y=2$ and $y=3$.

- If $y>3$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=3$ is unstable from above.
- If $2<y<3$, then $y^{\prime}=y^{2}(y-2)(y-3)<0$. So $y=3$ is unstable from below.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability.

- Write the ODE as

$$
y^{\prime}=y^{2}(y-2)(y-3)
$$

and it is immediate that the equilibrium solutions are $y=0, y=2$ and $y=3$.

- If $y>3$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=3$ is unstable from above.
- If $2<y<3$, then $y^{\prime}=y^{2}(y-2)(y-3)<0$. So $y=3$ is unstable from below. Therefore $y=3$ is unstable.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability.

- Write the ODE as

$$
y^{\prime}=y^{2}(y-2)(y-3)
$$

and it is immediate that the equilibrium solutions are $y=0, y=2$ and $y=3$.

- If $y>3$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=3$ is unstable from above.
- If $2<y<3$, then $y^{\prime}=y^{2}(y-2)(y-3)<0$. So $y=3$ is unstable from below. Therefore $y=3$ is unstable.
- Same reason as above,

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability.

- Write the ODE as

$$
y^{\prime}=y^{2}(y-2)(y-3)
$$

and it is immediate that the equilibrium solutions are $y=0, y=2$ and $y=3$.

- If $y>3$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=3$ is unstable from above.
- If $2<y<3$, then $y^{\prime}=y^{2}(y-2)(y-3)<0$. So $y=3$ is unstable from below. Therefore $y=3$ is unstable.
- Same reason as above, $y=2$ is stable from above.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$,

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=2$ is stable from below.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=2$ is stable from below. Therefore $y=2$ is stable.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=2$ is stable from below. Therefore $y=2$ is stable.
- Same reason as above,

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=2$ is stable from below. Therefore $y=2$ is stable.
- Same reason as above, $y=0$ is unstable from above.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=2$ is stable from below. Therefore $y=2$ is stable.
- Same reason as above, $y=0$ is unstable from above.
- If $y<0$,

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=2$ is stable from below. Therefore $y=2$ is stable.
- Same reason as above, $y=0$ is unstable from above.
- If $y<0$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=2$ is stable from below. Therefore $y=2$ is stable.
- Same reason as above, $y=0$ is unstable from above.
- If $y<0$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=0$ is stable from below.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=2$ is stable from below. Therefore $y=2$ is stable.
- Same reason as above, $y=0$ is unstable from above.
- If $y<0$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=0$ is stable from below. Therefore $y=0$ is semistable.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=2$ is stable from below. Therefore $y=2$ is stable.
- Same reason as above, $y=0$ is unstable from above.
- If $y<0$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=0$ is stable from below. Therefore $y=0$ is semistable.
Answer: There are three equilibrium solutions $y=0, y=2$ and $y=3$.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=2$ is stable from below. Therefore $y=2$ is stable.
- Same reason as above, $y=0$ is unstable from above.
- If $y<0$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=0$ is stable from below. Therefore $y=0$ is semistable.
Answer: There are three equilibrium solutions $y=0, y=2$ and $y=3$. $y=3$ is unstable.

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=2$ is stable from below. Therefore $y=2$ is stable.
- Same reason as above, $y=0$ is unstable from above.
- If $y<0$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=0$ is stable from below. Therefore $y=0$ is semistable.
Answer: There are three equilibrium solutions $y=0, y=2$ and $y=3$. $y=3$ is unstable. $y=2$ is stable

Quiz Problem 2

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=y^{2}\left(y^{2}-5 y+6\right)
$$

and determine the stability

- If $0<y<2$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=2$ is stable from below. Therefore $y=2$ is stable.
- Same reason as above, $y=0$ is unstable from above.
- If $y<0$, then $y^{\prime}=y^{2}(y-2)(y-3)>0$. So $y=0$ is stable from below. Therefore $y=0$ is semistable.
Answer: There are three equilibrium solutions $y=0, y=2$ and $y=3$. $y=3$ is unstable. $y=2$ is stable and $y=0$ is semistable.

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much,

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$ are

$$
y=k \pi, k=0, \pm 1, \pm 2, \cdots
$$

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$ are

$$
y=k \pi, k=0, \pm 1, \pm 2, \cdots
$$

- If $2 k \pi<y<2 k \pi+\pi$,

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$ are

$$
y=k \pi, k=0, \pm 1, \pm 2, \cdots
$$

- If $2 k \pi<y<2 k \pi+\pi$, we have $\sin y>0$.

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$ are

$$
y=k \pi, k=0, \pm 1, \pm 2, \cdots
$$

- If $2 k \pi<y<2 k \pi+\pi$, we have $\sin y>0$. So $y=2 k \pi$ is unstable from above;

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$ are

$$
y=k \pi, k=0, \pm 1, \pm 2, \cdots
$$

- If $2 k \pi<y<2 k \pi+\pi$, we have $\sin y>0$. So $y=2 k \pi$ is unstable from above; $y=2 k \pi+\pi$ is stable from below.

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$ are

$$
y=k \pi, k=0, \pm 1, \pm 2, \cdots
$$

- If $2 k \pi<y<2 k \pi+\pi$, we have $\sin y>0$. So $y=2 k \pi$ is unstable from above; $y=2 k \pi+\pi$ is stable from below.
- If $2 k \pi+\pi<y<2 k \pi+2 \pi$,

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$ are

$$
y=k \pi, k=0, \pm 1, \pm 2, \cdots
$$

- If $2 k \pi<y<2 k \pi+\pi$, we have $\sin y>0$. So $y=2 k \pi$ is unstable from above; $y=2 k \pi+\pi$ is stable from below.
- If $2 k \pi+\pi<y<2 k \pi+2 \pi$, we have $\sin y<0$.

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$ are

$$
y=k \pi, k=0, \pm 1, \pm 2, \cdots
$$

- If $2 k \pi<y<2 k \pi+\pi$, we have $\sin y>0$. So $y=2 k \pi$ is unstable from above; $y=2 k \pi+\pi$ is stable from below.
- If $2 k \pi+\pi<y<2 k \pi+2 \pi$, we have $\sin y<0$. So $y=2 k \pi+\pi$ is stable from above;

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$ are

$$
y=k \pi, k=0, \pm 1, \pm 2, \cdots
$$

- If $2 k \pi<y<2 k \pi+\pi$, we have $\sin y>0$. So $y=2 k \pi$ is unstable from above; $y=2 k \pi+\pi$ is stable from below.
- If $2 k \pi+\pi<y<2 k \pi+2 \pi$, we have $\sin y<0$. So $y=2 k \pi+\pi$ is stable from above; $y=2 k \pi+2 \pi$ is unstable from below.

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$ are

$$
y=k \pi, k=0, \pm 1, \pm 2, \cdots
$$

- If $2 k \pi<y<2 k \pi+\pi$, we have $\sin y>0$. So $y=2 k \pi$ is unstable from above; $y=2 k \pi+\pi$ is stable from below.
- If $2 k \pi+\pi<y<2 k \pi+2 \pi$, we have $\sin y<0$. So $y=2 k \pi+\pi$ is stable from above; $y=2 k \pi+2 \pi$ is unstable from below.
- Therefore the equilibrium solution $y=2 k \pi+\pi$ is stable

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$ are

$$
y=k \pi, k=0, \pm 1, \pm 2, \cdots
$$

- If $2 k \pi<y<2 k \pi+\pi$, we have $\sin y>0$. So $y=2 k \pi$ is unstable from above; $y=2 k \pi+\pi$ is stable from below.
- If $2 k \pi+\pi<y<2 k \pi+2 \pi$, we have $\sin y<0$. So $y=2 k \pi+\pi$ is stable from above; $y=2 k \pi+2 \pi$ is unstable from below.
- Therefore the equilibrium solution $y=2 k \pi+\pi$ is stable (I believe you don't have doubts)

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$ are

$$
y=k \pi, k=0, \pm 1, \pm 2, \cdots
$$

- If $2 k \pi<y<2 k \pi+\pi$, we have $\sin y>0$. So $y=2 k \pi$ is unstable from above; $y=2 k \pi+\pi$ is stable from below.
- If $2 k \pi+\pi<y<2 k \pi+2 \pi$, we have $\sin y<0$. So $y=2 k \pi+\pi$ is stable from above; $y=2 k \pi+2 \pi$ is unstable from below.
- Therefore the equilibrium solution $y=2 k \pi+\pi$ is stable (I believe you don't have doubts) and the equilibrium solution $y=2 k \pi$ is unstable

Challenging Problem last week

Find out the equilibrium solutions of the ODE

$$
y^{\prime}=\sin y
$$

and determine the stability.

- As we have practised so much, the zero points of $\sin y$ are

$$
y=k \pi, k=0, \pm 1, \pm 2, \cdots
$$

- If $2 k \pi<y<2 k \pi+\pi$, we have $\sin y>0$. So $y=2 k \pi$ is unstable from above; $y=2 k \pi+\pi$ is stable from below.
- If $2 k \pi+\pi<y<2 k \pi+2 \pi$, we have $\sin y<0$. So $y=2 k \pi+\pi$ is stable from above; $y=2 k \pi+2 \pi$ is unstable from below.
- Therefore the equilibrium solution $y=2 k \pi+\pi$ is stable (I believe you don't have doubts) and the equilibrium solution $y=2 k \pi$ is unstable (you have to think a little bit).

References

- To learn how to play this game without drawing a graph,

References

- To learn how to play this game without drawing a graph, please read Dr. Z's note

References

- To learn how to play this game without drawing a graph, please read Dr. Z's note at
http://www.math.rutgers.edu/~zeilberg/calc4/L5.pdf

References

- To learn how to play this game without drawing a graph, please read Dr. Z's note at http://www.math.rutgers.edu/~zeilberg/calc4/L5.pdf
- If you still don't get the full idea of Section 2.5

References

- To learn how to play this game without drawing a graph, please read Dr. Z's note at http://www.math.rutgers.edu/~zeilberg/calc4/L5.pdf
- If you still don't get the full idea of Section 2.5(for example you don't know what does it mean to be autonomous),

References

- To learn how to play this game without drawing a graph, please read Dr. Z's note at http://www.math.rutgers.edu/~zeilberg/calc4/L5.pdf
- If you still don't get the full idea of Section 2.5(for example you don't know what does it mean to be autonomous), please watch MIT Lecture 5

References

- To learn how to play this game without drawing a graph, please read Dr. Z's note at http://www.math.rutgers.edu/~zeilberg/calc4/L5.pdf
- If you still don't get the full idea of Section 2.5(for example you don't know what does it mean to be autonomous), please watch MIT Lecture 5 at http://ocw.mit.edu/courses/mathematics/ 18-03-differential-equations-spring-2010/ video-lectures/lecture-5-first-order-autonomous-odes/

References

- To learn how to play this game without drawing a graph, please read Dr. Z's note at http://www.math.rutgers.edu/~zeilberg/calc4/L5.pdf
- If you still don't get the full idea of Section 2.5(for example you don't know what does it mean to be autonomous), please watch MIT Lecture 5 at http://ocw.mit.edu/courses/mathematics/ 18-03-differential-equations-spring-2010/ video-lectures/lecture-5-first-order-autonomous-odes/
- For next part about exact equations,

References

- To learn how to play this game without drawing a graph, please read Dr. Z's note at http://www.math.rutgers.edu/~zeilberg/calc4/L5.pdf
- If you still don't get the full idea of Section 2.5 (for example you don't know what does it mean to be autonomous), please watch MIT Lecture 5 at
http://ocw.mit.edu/courses/mathematics/ 18-03-differential-equations-spring-2010/ video-lectures/lecture-5-first-order-autonomous-odes/
- For next part about exact equations, most of the argument comes from Dr. Z's note,

References

- To learn how to play this game without drawing a graph, please read Dr. Z's note at http://www.math.rutgers.edu/~zeilberg/calc4/L5.pdf
- If you still don't get the full idea of Section 2.5 (for example you don't know what does it mean to be autonomous), please watch MIT Lecture 5 at
http://ocw.mit.edu/courses/mathematics/ 18-03-differential-equations-spring-2010/ video-lectures/lecture-5-first-order-autonomous-odes/
- For next part about exact equations, most of the argument comes from Dr. Z's note, which can be found here: http://www.math.rutgers.edu/~zeilberg/calc4/L6.pdf

References

- To learn how to play this game without drawing a graph, please read Dr. Z's note at http://www.math.rutgers.edu/~zeilberg/calc4/L5.pdf
- If you still don't get the full idea of Section 2.5 (for example you don't know what does it mean to be autonomous), please watch MIT Lecture 5 at
http://ocw.mit.edu/courses/mathematics/ 18-03-differential-equations-spring-2010/
video-lectures/lecture-5-first-order-autonomous-odes/
- For next part about exact equations, most of the argument comes from Dr. Z's note, which can be found here:
http://www.math.rutgers.edu/~zeilberg/calc4/L6.pdf It would be much more pleasant to read his notes

References

- To learn how to play this game without drawing a graph, please read Dr. Z's note at http://www.math.rutgers.edu/~zeilberg/calc4/L5.pdf
- If you still don't get the full idea of Section 2.5 (for example you don't know what does it mean to be autonomous), please watch MIT Lecture 5 at
http://ocw.mit.edu/courses/mathematics/ 18-03-differential-equations-spring-2010/ video-lectures/lecture-5-first-order-autonomous-odes/
- For next part about exact equations, most of the argument comes from Dr. Z's note, which can be found here:
http://www.math.rutgers.edu/~zeilberg/calc4/L6.pdf It would be much more pleasant to read his notes than to read the book.

Exact Equations: Brief Recall

- A first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact

Exact Equations: Brief Recall

- A first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

Exact Equations: Brief Recall

- A first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

or in simpler notation:

Exact Equations: Brief Recall

- A first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

or in simpler notation:

$$
M_{y}(x, y)=N_{x}(x, y)
$$

Exact Equations: Brief Recall

- A first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

or in simpler notation:

$$
M_{y}(x, y)=N_{x}(x, y) .
$$

- In this case,

Exact Equations: Brief Recall

- A first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

or in simpler notation:

$$
M_{y}(x, y)=N_{x}(x, y)
$$

- In this case, there exists a function $F(x, y)$,

Exact Equations: Brief Recall

- A first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

or in simpler notation:

$$
M_{y}(x, y)=N_{x}(x, y)
$$

- In this case, there exists a function $F(x, y)$, such that

$$
F_{x}(x, y)=M(x, y)
$$

Exact Equations: Brief Recall

- A first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

or in simpler notation:

$$
M_{y}(x, y)=N_{x}(x, y)
$$

- In this case, there exists a function $F(x, y)$, such that

$$
F_{x}(x, y)=M(x, y), F_{y}(x, y)=N(x, y)
$$

Exact Equations: Brief Recall

- A first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

or in simpler notation:

$$
M_{y}(x, y)=N_{x}(x, y)
$$

- In this case, there exists a function $F(x, y)$, such that

$$
F_{x}(x, y)=M(x, y), F_{y}(x, y)=N(x, y)
$$

and

$$
F(x, y(x))=C
$$

Exact Equations: Brief Recall

- A first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

or in simpler notation:

$$
M_{y}(x, y)=N_{x}(x, y)
$$

- In this case, there exists a function $F(x, y)$, such that

$$
F_{x}(x, y)=M(x, y), F_{y}(x, y)=N(x, y)
$$

and

$$
F(x, y(x))=C
$$

gives the general implicit solution of the ODE.

Exact Equations: Brief Recall

- A first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

or in simpler notation:

$$
M_{y}(x, y)=N_{x}(x, y)
$$

- In this case, there exists a function $F(x, y)$, such that

$$
F_{x}(x, y)=M(x, y), F_{y}(x, y)=N(x, y)
$$

and

$$
F(x, y(x))=C
$$

gives the general implicit solution of the ODE.

- So in order to solve an exact ODE,

Exact Equations: Brief Recall

- A first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

or in simpler notation:

$$
M_{y}(x, y)=N_{x}(x, y)
$$

- In this case, there exists a function $F(x, y)$, such that

$$
F_{x}(x, y)=M(x, y), F_{y}(x, y)=N(x, y)
$$

and

$$
F(x, y(x))=C
$$

gives the general implicit solution of the ODE.

- So in order to solve an exact ODE, it suffices to find such a function.

Exact Equations: Brief Recall

How to find $F(x, y)$?

Exact Equations: Brief Recall

How to find $F(x, y)$?
(1) Make sure your equation is exact first!

Exact Equations: Brief Recall

How to find $F(x, y)$?
(1) Make sure your equation is exact first! If it were not exact, don't attempt the following steps!

Exact Equations: Brief Recall

How to find $F(x, y)$?
(1) Make sure your equation is exact first! If it were not exact, don't attempt the following steps!
(2) Assuming the equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact.

Exact Equations: Brief Recall

How to find $F(x, y)$?
(1) Make sure your equation is exact first! If it were not exact, don't attempt the following steps!
(2) Assuming the equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact. Since

$$
F_{x}(x, y)=M(x, y),
$$

Exact Equations: Brief Recall

How to find $F(x, y)$?
(1) Make sure your equation is exact first! If it were not exact, don't attempt the following steps!
(2) Assuming the equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact. Since

$$
F_{x}(x, y)=M(x, y)
$$

we integrate both sides with respect to x,

Exact Equations: Brief Recall

How to find $F(x, y)$?
(1) Make sure your equation is exact first! If it were not exact, don't attempt the following steps!
(2) Assuming the equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact. Since

$$
F_{x}(x, y)=M(x, y)
$$

we integrate both sides with respect to x, to get

$$
F(x, y)=\int M(x, y) d x+\text { SomethingThatDoesNotDependOnx }
$$

Exact Equations: Brief Recall

How to find $F(x, y)$?
(1) Make sure your equation is exact first! If it were not exact, don't attempt the following steps!
(2) Assuming the equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact. Since

$$
F_{x}(x, y)=M(x, y)
$$

we integrate both sides with respect to x, to get

$$
F(x, y)=\int M(x, y) d x+\text { SomethingThatDoesNotDependOnx }
$$

But SomethingThatDoesNotDependOnx means a function on y.

Exact Equations: Brief Recall

How to find $F(x, y)$?
(1) Make sure your equation is exact first! If it were not exact, don't attempt the following steps!
(2) Assuming the equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact. Since

$$
F_{x}(x, y)=M(x, y)
$$

we integrate both sides with respect to x, to get

$$
F(x, y)=\int M(x, y) d x+\text { SomethingThatDoesNotDependOnx }
$$

But SomethingThatDoesNotDependOnx means a function on y. So we call it $\phi(y)$.

Exact Equations: Brief Recall

How to find $F(x, y)$?
(1) Make sure your equation is exact first! If it were not exact, don't attempt the following steps!
(2) Assuming the equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact. Since

$$
F_{x}(x, y)=M(x, y)
$$

we integrate both sides with respect to x, to get

$$
F(x, y)=\int M(x, y) d x+\text { SomethingThatDoesNotDependOnx }
$$

But SomethingThatDoesNotDependOnx means a function on y. So we call it $\phi(y)$.
(3) Now use the fact that

$$
F_{y}(x, y)=N(x, y)
$$

Exact Equations: Brief Recall

How to find $F(x, y)$?
(1) Make sure your equation is exact first! If it were not exact, don't attempt the following steps!
(2) Assuming the equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact. Since

$$
F_{x}(x, y)=M(x, y)
$$

we integrate both sides with respect to x, to get

$$
F(x, y)=\int M(x, y) d x+\text { SomethingThatDoesNotDependOnx }
$$

But SomethingThatDoesNotDependOnx means a function on y. So we call it $\phi(y)$.
(3) Now use the fact that

$$
F_{y}(x, y)=N(x, y)
$$

and this leaves us,

Exact Equations: Brief Recall

How to find $F(x, y)$?
(1) Make sure your equation is exact first! If it were not exact, don't attempt the following steps!
(2) Assuming the equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact. Since

$$
F_{x}(x, y)=M(x, y)
$$

we integrate both sides with respect to x, to get

$$
F(x, y)=\int M(x, y) d x+\text { SomethingThatDoesNotDependOnx }
$$

But SomethingThatDoesNotDependOnx means a function on y. So we call it $\phi(y)$.
(3) Now use the fact that

$$
F_{y}(x, y)=N(x, y)
$$

and this leaves us, after the algebra,

Exact Equations: Brief Recall

How to find $F(x, y)$?
(1) Make sure your equation is exact first! If it were not exact, don't attempt the following steps!
(2) Assuming the equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact. Since

$$
F_{x}(x, y)=M(x, y)
$$

we integrate both sides with respect to x, to get

$$
F(x, y)=\int M(x, y) d x+\text { SomethingThatDoesNotDependOnx }
$$

But SomethingThatDoesNotDependOnx means a function on y. So we call it $\phi(y)$.
(3) Now use the fact that

$$
F_{y}(x, y)=N(x, y)
$$

and this leaves us, after the algebra, with some expression concerning $\phi^{\prime}(y)$.

Exact Equations: Brief Recall

How to find $F(x, y)$?
(1) Make sure your equation is exact first! If it were not exact, don't attempt the following steps!
(2) Assuming the equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact. Since

$$
F_{x}(x, y)=M(x, y)
$$

we integrate both sides with respect to x, to get

$$
F(x, y)=\int M(x, y) d x+\text { SomethingThatDoesNotDependOnx }
$$

But SomethingThatDoesNotDependOnx means a function on y. So we call it $\phi(y)$.
(3) Now use the fact that

$$
F_{y}(x, y)=N(x, y)
$$

and this leaves us, after the algebra, with some expression concerning $\phi^{\prime}(y)$. Then you may get $\phi(y)$ by integration.

Exact Equations: Brief Recall

What if your equation is not exact?

Exact Equations: Brief Recall

What if your equation is not exact?

- In some cases,

Exact Equations: Brief Recall

What if your equation is not exact?

- In some cases, you can find an integating factor

Exact Equations: Brief Recall

What if your equation is not exact?

- In some cases, you can find an integating factor and after multiplication with the integrating factor

Exact Equations: Brief Recall

What if your equation is not exact?

- In some cases, you can find an integating factor and after multiplication with the integrating factor you shall get an exact equation.

Exact Equations: Brief Recall

What if your equation is not exact?

- In some cases, you can find an integating factor and after multiplication with the integrating factor you shall get an exact equation. BUT THERE IS NO GENERAL WAY TO GET THIS INTEGRATING FACTOR EFFICIENTLY.

Exact Equations: Brief Recall

What if your equation is not exact?

- In some cases, you can find an integating factor and after multiplication with the integrating factor you shall get an exact equation. BUT THERE IS NO GENERAL WAY TO GET THIS INTEGRATING FACTOR EFFICIENTLY.
- When

$$
\frac{M_{y}-N_{x}}{N}
$$

Exact Equations: Brief Recall

What if your equation is not exact?

- In some cases, you can find an integating factor and after multiplication with the integrating factor you shall get an exact equation. BUT THERE IS NO GENERAL WAY TO GET THIS INTEGRATING FACTOR EFFICIENTLY.
- When

$$
\frac{M_{y}-N_{x}}{N}
$$

is independent of y

Exact Equations: Brief Recall

What if your equation is not exact?

- In some cases, you can find an integating factor and after multiplication with the integrating factor you shall get an exact equation. BUT THERE IS NO GENERAL WAY TO GET THIS INTEGRATING FACTOR EFFICIENTLY.
- When

$$
\frac{M_{y}-N_{x}}{N}
$$

is independent of y and depends ONLY ON x,

Exact Equations: Brief Recall

What if your equation is not exact?

- In some cases, you can find an integating factor and after multiplication with the integrating factor you shall get an exact equation. BUT THERE IS NO GENERAL WAY TO GET THIS INTEGRATING FACTOR EFFICIENTLY.
- When

$$
\frac{M_{y}-N_{x}}{N}
$$

is independent of y and depends ONLY ON x, then you can find an integrating factor

Exact Equations: Brief Recall

What if your equation is not exact?

- In some cases, you can find an integating factor and after multiplication with the integrating factor you shall get an exact equation. BUT THERE IS NO GENERAL WAY TO GET THIS INTEGRATING FACTOR EFFICIENTLY.
- When

$$
\frac{M_{y}-N_{x}}{N}
$$

is independent of y and depends ONLY ON x, then you can find an integrating factor by solving the differential equation

$$
\frac{M_{y}-N_{x}}{N}=\frac{\mu^{\prime}(x)}{\mu(x)}
$$

Example: Book Problem 2.6.20

Use the given integrating factor

$$
\mu(x, y)=y e^{x}
$$

Example: Book Problem 2.6.20

Use the given integrating factor

$$
\mu(x, y)=y e^{x}
$$

to solve the nonexact ODE

$$
\left(\frac{\sin y}{y}-2 e^{-x} \sin x\right)+\left(\frac{\cos y+2 e^{-x} \cos x}{y}\right) y^{\prime}=0 .
$$

Example: Book Problem 2.6.20

Use the given integrating factor

$$
\mu(x, y)=y e^{x}
$$

to solve the nonexact ODE

$$
\left(\frac{\sin y}{y}-2 e^{-x} \sin x\right)+\left(\frac{\cos y+2 e^{-x} \cos x}{y}\right) y^{\prime}=0 .
$$

- Multiply the integrating factor $\mu(x, y)$ to the ODE

Example: Book Problem 2.6.20

Use the given integrating factor

$$
\mu(x, y)=y e^{x}
$$

to solve the nonexact ODE

$$
\left(\frac{\sin y}{y}-2 e^{-x} \sin x\right)+\left(\frac{\cos y+2 e^{-x} \cos x}{y}\right) y^{\prime}=0 .
$$

- Multiply the integrating factor $\mu(x, y)$ to the ODE to get

$$
e^{x} \sin y-2 y \sin x+\left(e^{x} \cos y+2 \cos x\right) y^{\prime}=0
$$

Example: Book Problem 2.6.20

Use the given integrating factor

$$
\mu(x, y)=y e^{x}
$$

to solve the nonexact ODE

$$
\left(\frac{\sin y}{y}-2 e^{-x} \sin x\right)+\left(\frac{\cos y+2 e^{-x} \cos x}{y}\right) y^{\prime}=0 .
$$

- Multiply the integrating factor $\mu(x, y)$ to the ODE to get

$$
e^{x} \sin y-2 y \sin x+\left(e^{x} \cos y+2 \cos x\right) y^{\prime}=0
$$

- Check that you have an exact equation.

Example: Book Problem 2.6.20

Use the given integrating factor

$$
\mu(x, y)=y e^{x}
$$

to solve the nonexact ODE

$$
\left(\frac{\sin y}{y}-2 e^{-x} \sin x\right)+\left(\frac{\cos y+2 e^{-x} \cos x}{y}\right) y^{\prime}=0 .
$$

- Multiply the integrating factor $\mu(x, y)$ to the ODE to get

$$
e^{x} \sin y-2 y \sin x+\left(e^{x} \cos y+2 \cos x\right) y^{\prime}=0
$$

- Check that you have an exact equation.

$$
M=e^{x} \sin y-2 y \sin x
$$

Example: Book Problem 2.6.20

Use the given integrating factor

$$
\mu(x, y)=y e^{x}
$$

to solve the nonexact ODE

$$
\left(\frac{\sin y}{y}-2 e^{-x} \sin x\right)+\left(\frac{\cos y+2 e^{-x} \cos x}{y}\right) y^{\prime}=0 .
$$

- Multiply the integrating factor $\mu(x, y)$ to the ODE to get

$$
e^{x} \sin y-2 y \sin x+\left(e^{x} \cos y+2 \cos x\right) y^{\prime}=0
$$

- Check that you have an exact equation.

$$
\begin{aligned}
& M=e^{x} \sin y-2 y \sin x \\
& M_{y}=e^{x} \cos y-2 \sin x
\end{aligned}
$$

Example: Book Problem 2.6.20

Use the given integrating factor

$$
\mu(x, y)=y e^{x}
$$

to solve the nonexact ODE

$$
\left(\frac{\sin y}{y}-2 e^{-x} \sin x\right)+\left(\frac{\cos y+2 e^{-x} \cos x}{y}\right) y^{\prime}=0 .
$$

- Multiply the integrating factor $\mu(x, y)$ to the ODE to get

$$
e^{x} \sin y-2 y \sin x+\left(e^{x} \cos y+2 \cos x\right) y^{\prime}=0
$$

- Check that you have an exact equation.

$$
\begin{aligned}
& M=e^{x} \sin y-2 y \sin x \\
& M y=e^{x} \cos y-2 \sin x \\
& N=e^{x} \cos y+2 \cos x
\end{aligned}
$$

Example: Book Problem 2.6.20

Use the given integrating factor

$$
\mu(x, y)=y e^{x}
$$

to solve the nonexact ODE

$$
\left(\frac{\sin y}{y}-2 e^{-x} \sin x\right)+\left(\frac{\cos y+2 e^{-x} \cos x}{y}\right) y^{\prime}=0
$$

- Multiply the integrating factor $\mu(x, y)$ to the ODE to get

$$
e^{x} \sin y-2 y \sin x+\left(e^{x} \cos y+2 \cos x\right) y^{\prime}=0
$$

- Check that you have an exact equation.

$$
\begin{aligned}
& M=e^{x} \sin y-2 y \sin x \\
& M y=e^{x} \cos y-2 \sin x \\
& N=e^{x} \cos y+2 \cos x \\
& N_{x}=e^{x} \cos y-2 \sin x
\end{aligned}
$$

So $M_{y}=N_{x}$

Example: Book Problem 2.6.20

Use the given integrating factor

$$
\mu(x, y)=y e^{x}
$$

to solve the nonexact ODE

$$
\left(\frac{\sin y}{y}-2 e^{-x} \sin x\right)+\left(\frac{\cos y+2 e^{-x} \cos x}{y}\right) y^{\prime}=0
$$

- Multiply the integrating factor $\mu(x, y)$ to the ODE to get

$$
e^{x} \sin y-2 y \sin x+\left(e^{x} \cos y+2 \cos x\right) y^{\prime}=0
$$

- Check that you have an exact equation.

$$
\begin{aligned}
& M=e^{x} \sin y-2 y \sin x \\
& M_{y}=e^{x} \cos y-2 \sin x \\
& N=e^{x} \cos y+2 \cos x \\
& N_{x}=e^{x} \cos y-2 \sin x .
\end{aligned}
$$

So $M_{y}=N_{x}$ and yes you do get an exact ODE.

Example: Book Problem 2.6.20

- Integrate M with respect to x :

Example: Book Problem 2.6.20

- Integrate M with respect to x :

$$
F(x, y)=\int M(x, y) d x
$$

Example: Book Problem 2.6.20

- Integrate M with respect to x :

$$
F(x, y)=\int M(x, y) d x=\int\left(e^{x} \sin y-2 y \sin x\right) d x
$$

Example: Book Problem 2.6.20

- Integrate M with respect to x :

$$
\begin{aligned}
F(x, y) & =\int M(x, y) d x=\int\left(e^{x} \sin y-2 y \sin x\right) d x \\
& =e^{x} \sin y+2 y \cos x+\phi(y)
\end{aligned}
$$

Example: Book Problem 2.6.20

- Integrate M with respect to x :

$$
\begin{aligned}
F(x, y) & =\int M(x, y) d x=\int\left(e^{x} \sin y-2 y \sin x\right) d x \\
& =e^{x} \sin y+2 y \cos x+\phi(y)
\end{aligned}
$$

- Use $F_{y}(x, y)=N(x, y)$ to determine $\phi(y)$:

Example: Book Problem 2.6.20

- Integrate M with respect to x :

$$
\begin{aligned}
F(x, y) & =\int M(x, y) d x=\int\left(e^{x} \sin y-2 y \sin x\right) d x \\
& =e^{x} \sin y+2 y \cos x+\phi(y)
\end{aligned}
$$

- Use $F_{y}(x, y)=N(x, y)$ to determine $\phi(y)$:

$$
F_{y}(x, y)=e^{x} \cos y+2 \cos x+\phi^{\prime}(y)
$$

Example: Book Problem 2.6.20

- Integrate M with respect to x :

$$
\begin{aligned}
F(x, y) & =\int M(x, y) d x=\int\left(e^{x} \sin y-2 y \sin x\right) d x \\
& =e^{x} \sin y+2 y \cos x+\phi(y)
\end{aligned}
$$

- Use $F_{y}(x, y)=N(x, y)$ to determine $\phi(y)$:

$$
F_{y}(x, y)=e^{x} \cos y+2 \cos x+\phi^{\prime}(y)=N(x, y)=e^{x} \cos y+2 \cos x
$$

Example: Book Problem 2.6.20

- Integrate M with respect to x :

$$
\begin{aligned}
F(x, y) & =\int M(x, y) d x=\int\left(e^{x} \sin y-2 y \sin x\right) d x \\
& =e^{x} \sin y+2 y \cos x+\phi(y)
\end{aligned}
$$

- Use $F_{y}(x, y)=N(x, y)$ to determine $\phi(y)$:

$$
\begin{aligned}
& F_{y}(x, y)=e^{x} \cos y+2 \cos x+\phi^{\prime}(y)=N(x, y)=e^{x} \cos y+2 \cos x \\
& \text { So } \phi^{\prime}(y)=0
\end{aligned}
$$

Example: Book Problem 2.6.20

- Integrate M with respect to x :

$$
\begin{aligned}
F(x, y) & =\int M(x, y) d x=\int\left(e^{x} \sin y-2 y \sin x\right) d x \\
& =e^{x} \sin y+2 y \cos x+\phi(y)
\end{aligned}
$$

- Use $F_{y}(x, y)=N(x, y)$ to determine $\phi(y)$:

$$
F_{y}(x, y)=e^{x} \cos y+2 \cos x+\phi^{\prime}(y)=N(x, y)=e^{x} \cos y+2 \cos x
$$

So $\phi^{\prime}(y)=0$ and therefore $\phi(y)=C$.

Example: Book Problem 2.6.20

- Integrate M with respect to x :

$$
\begin{aligned}
F(x, y) & =\int M(x, y) d x=\int\left(e^{x} \sin y-2 y \sin x\right) d x \\
& =e^{x} \sin y+2 y \cos x+\phi(y)
\end{aligned}
$$

- Use $F_{y}(x, y)=N(x, y)$ to determine $\phi(y)$:

$$
F_{y}(x, y)=e^{x} \cos y+2 \cos x+\phi^{\prime}(y)=N(x, y)=e^{x} \cos y+2 \cos x
$$

So $\phi^{\prime}(y)=0$ and therefore $\phi(y)=C$. We need to get one $\phi(y)$

Example: Book Problem 2.6.20

- Integrate M with respect to x :

$$
\begin{aligned}
F(x, y) & =\int M(x, y) d x=\int\left(e^{x} \sin y-2 y \sin x\right) d x \\
& =e^{x} \sin y+2 y \cos x+\phi(y)
\end{aligned}
$$

- Use $F_{y}(x, y)=N(x, y)$ to determine $\phi(y)$:

$$
F_{y}(x, y)=e^{x} \cos y+2 \cos x+\phi^{\prime}(y)=N(x, y)=e^{x} \cos y+2 \cos x
$$

So $\phi^{\prime}(y)=0$ and therefore $\phi(y)=C$. We need to get one $\phi(y)$ so it suffice to take $\phi(y)=0$.

Example: Book Problem 2.6.20

- Integrate M with respect to x :

$$
\begin{aligned}
F(x, y) & =\int M(x, y) d x=\int\left(e^{x} \sin y-2 y \sin x\right) d x \\
& =e^{x} \sin y+2 y \cos x+\phi(y)
\end{aligned}
$$

- Use $F_{y}(x, y)=N(x, y)$ to determine $\phi(y)$:

$$
F_{y}(x, y)=e^{x} \cos y+2 \cos x+\phi^{\prime}(y)=N(x, y)=e^{x} \cos y+2 \cos x
$$

So $\phi^{\prime}(y)=0$ and therefore $\phi(y)=C$. We need to get one $\phi(y)$ so it suffice to take $\phi(y)=0$.

- So the final (implicit) solution of our ODE

Example: Book Problem 2.6.20

- Integrate M with respect to x :

$$
\begin{aligned}
F(x, y) & =\int M(x, y) d x=\int\left(e^{x} \sin y-2 y \sin x\right) d x \\
& =e^{x} \sin y+2 y \cos x+\phi(y)
\end{aligned}
$$

- Use $F_{y}(x, y)=N(x, y)$ to determine $\phi(y)$:

$$
F_{y}(x, y)=e^{x} \cos y+2 \cos x+\phi^{\prime}(y)=N(x, y)=e^{x} \cos y+2 \cos x
$$

So $\phi^{\prime}(y)=0$ and therefore $\phi(y)=C$. We need to get one $\phi(y)$ so it suffice to take $\phi(y)=0$.

- So the final (implicit) solution of our ODE is

$$
e^{x} \sin y+2 y \cos x=C
$$

Example: Book Problem 2.6.25

Find an integrating factor of the ODE

$$
\left(3 x^{2} y+2 x y+y^{3}\right)+\left(x^{2}+y^{2}\right) y^{\prime}=0
$$

and solve it.

Example: Book Problem 2.6.25

Find an integrating factor of the ODE

$$
\left(3 x^{2} y+2 x y+y^{3}\right)+\left(x^{2}+y^{2}\right) y^{\prime}=0
$$

and solve it.

- Check that the equation is not exact:

Example: Book Problem 2.6.25

Find an integrating factor of the ODE

$$
\left(3 x^{2} y+2 x y+y^{3}\right)+\left(x^{2}+y^{2}\right) y^{\prime}=0
$$

and solve it.

- Check that the equation is not exact:

$$
M=3 x^{2} y+2 x y+y^{3}
$$

Example: Book Problem 2.6.25

Find an integrating factor of the ODE

$$
\left(3 x^{2} y+2 x y+y^{3}\right)+\left(x^{2}+y^{2}\right) y^{\prime}=0
$$

and solve it.

- Check that the equation is not exact:

$$
\begin{aligned}
& M=3 x^{2} y+2 x y+y^{3} \\
& M y=3 x^{2}+2 x+3 y^{2}
\end{aligned}
$$

Example: Book Problem 2.6.25

Find an integrating factor of the ODE

$$
\left(3 x^{2} y+2 x y+y^{3}\right)+\left(x^{2}+y^{2}\right) y^{\prime}=0
$$

and solve it.

- Check that the equation is not exact:

$$
\begin{aligned}
& M=3 x^{2} y+2 x y+y^{3} \\
& M_{y}=3 x^{2}+2 x+3 y^{2} \\
& N=x^{2}+y^{2}
\end{aligned}
$$

Example: Book Problem 2.6.25

Find an integrating factor of the ODE

$$
\left(3 x^{2} y+2 x y+y^{3}\right)+\left(x^{2}+y^{2}\right) y^{\prime}=0
$$

and solve it.

- Check that the equation is not exact:

$$
\begin{aligned}
& M=3 x^{2} y+2 x y+y^{3} \\
& M_{y}=3 x^{2}+2 x+3 y^{2} \\
& N=x^{2}+y^{2} \\
& N_{x}=2 x
\end{aligned}
$$

Example: Book Problem 2.6.25

Find an integrating factor of the ODE

$$
\left(3 x^{2} y+2 x y+y^{3}\right)+\left(x^{2}+y^{2}\right) y^{\prime}=0
$$

and solve it.

- Check that the equation is not exact:

$$
\begin{aligned}
& M=3 x^{2} y+2 x y+y^{3} \\
& M_{y}=3 x^{2}+2 x+3 y^{2} \\
& N=x^{2}+y^{2} \\
& N_{x}=2 x
\end{aligned}
$$

Obvious enough that $M_{y} \neq N_{x}$.

Example: Book Problem 2.6.25

- Compute $\left(M_{y}-N_{x}\right) / N$:

Example: Book Problem 2.6.25

- Compute $\left(M_{y}-N_{x}\right) / N$:

$$
\frac{M_{y}-N_{x}}{N}
$$

Example: Book Problem 2.6.25

- Compute $\left(M_{y}-N_{x}\right) / N$:

$$
\frac{M_{y}-N_{x}}{N}=\frac{3 x^{2}+2 x+3 y^{2}-2 x}{x^{2}+y^{2}}
$$

Example: Book Problem 2.6.25

- Compute $\left(M_{y}-N_{x}\right) / N$:

$$
\frac{M_{y}-N_{x}}{N}=\frac{3 x^{2}+2 x+3 y^{2}-2 x}{x^{2}+y^{2}}=3 .
$$

Example: Book Problem 2.6.25

- Compute $\left(M_{y}-N_{x}\right) / N$:

$$
\frac{M_{y}-N_{x}}{N}=\frac{3 x^{2}+2 x+3 y^{2}-2 x}{x^{2}+y^{2}}=3 .
$$

- Solve the ODE $\mu^{\prime} / \mu=\left(M_{y}-N_{x}\right) / N$:

Example: Book Problem 2.6.25

- Compute $\left(M_{y}-N_{x}\right) / N$:

$$
\frac{M_{y}-N_{x}}{N}=\frac{3 x^{2}+2 x+3 y^{2}-2 x}{x^{2}+y^{2}}=3 .
$$

- Solve the ODE $\mu^{\prime} / \mu=\left(M_{y}-N_{x}\right) / N$:

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=3
$$

Example: Book Problem 2.6.25

- Compute $\left(M_{y}-N_{x}\right) / N$:

$$
\frac{M_{y}-N_{x}}{N}=\frac{3 x^{2}+2 x+3 y^{2}-2 x}{x^{2}+y^{2}}=3
$$

- Solve the ODE $\mu^{\prime} / \mu=\left(M_{y}-N_{x}\right) / N$:

$$
\begin{aligned}
\frac{\mu^{\prime}(x)}{\mu(x)} & =3 \\
\ln \mu(x) & =\int 3 d x=3 x
\end{aligned}
$$

Example: Book Problem 2.6.25

- Compute $\left(M_{y}-N_{x}\right) / N$:

$$
\frac{M_{y}-N_{x}}{N}=\frac{3 x^{2}+2 x+3 y^{2}-2 x}{x^{2}+y^{2}}=3
$$

- Solve the ODE $\mu^{\prime} / \mu=\left(M_{y}-N_{x}\right) / N$:

$$
\begin{aligned}
\frac{\mu^{\prime}(x)}{\mu(x)} & =3 \\
\ln \mu(x) & =\int 3 d x=3 x \\
\mu(x) & =e^{3 x}
\end{aligned}
$$

Example: Book Problem 2.6.25

- Compute $\left(M_{y}-N_{x}\right) / N$:

$$
\frac{M_{y}-N_{x}}{N}=\frac{3 x^{2}+2 x+3 y^{2}-2 x}{x^{2}+y^{2}}=3
$$

- Solve the ODE $\mu^{\prime} / \mu=\left(M_{y}-N_{x}\right) / N$:

$$
\begin{aligned}
\frac{\mu^{\prime}(x)}{\mu(x)} & =3 \\
\ln \mu(x) & =\int 3 d x=3 x \\
\mu(x) & =e^{3 x}
\end{aligned}
$$

- Get your exact equation:

Example: Book Problem 2.6.25

- Compute $\left(M_{y}-N_{x}\right) / N$:

$$
\frac{M_{y}-N_{x}}{N}=\frac{3 x^{2}+2 x+3 y^{2}-2 x}{x^{2}+y^{2}}=3
$$

- Solve the ODE $\mu^{\prime} / \mu=\left(M_{y}-N_{x}\right) / N$:

$$
\begin{aligned}
\frac{\mu^{\prime}(x)}{\mu(x)} & =3 \\
\ln \mu(x) & =\int 3 d x=3 x \\
\mu(x) & =e^{3 x}
\end{aligned}
$$

- Get your exact equation:

$$
e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right)+e^{3 x}\left(x^{2}+y^{2}\right) y^{\prime}=0
$$

Example: Book Problem 2.6.25

- Integrate your new $\mathrm{M}(\mathrm{x}, \mathrm{y})$:

Example: Book Problem 2.6.25

- Integrate your new $\mathrm{M}(\mathrm{x}, \mathrm{y})$:

$$
F=\int e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right) d x
$$

Example: Book Problem 2.6.25

- Integrate your new $\mathrm{M}(\mathrm{x}, \mathrm{y})$:

$$
F=\int e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right) d x=\frac{1}{3} \int\left(3 x^{2} y+2 x y+y^{3}\right) d e^{3 x}
$$

Example: Book Problem 2.6.25

- Integrate your new $\mathrm{M}(\mathrm{x}, \mathrm{y})$:

$$
\begin{aligned}
F & =\int e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right) d x=\frac{1}{3} \int\left(3 x^{2} y+2 x y+y^{3}\right) d e^{3 x} \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{3} \int e^{3 x}(6 x y+2 y) d x
\end{aligned}
$$

Example: Book Problem 2.6.25

- Integrate your new $\mathrm{M}(\mathrm{x}, \mathrm{y})$:

$$
\begin{aligned}
F & =\int e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right) d x=\frac{1}{3} \int\left(3 x^{2} y+2 x y+y^{3}\right) d e^{3 x} \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{3} \int e^{3 x}(6 x y+2 y) d x \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{9} \int(6 x y+2 y) d e^{3 x}
\end{aligned}
$$

Example: Book Problem 2.6.25

- Integrate your new $\mathrm{M}(\mathrm{x}, \mathrm{y})$:

$$
\begin{aligned}
F & =\int e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right) d x=\frac{1}{3} \int\left(3 x^{2} y+2 x y+y^{3}\right) d e^{3 x} \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{3} \int e^{3 x}(6 x y+2 y) d x \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{9} \int(6 x y+2 y) d e^{3 x} \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{9}(6 x y+2 y) e^{3 x}+\frac{1}{9} \int e^{3 x} \cdot 6 y d x
\end{aligned}
$$

Example: Book Problem 2.6.25

- Integrate your new $\mathrm{M}(\mathrm{x}, \mathrm{y})$:

$$
\begin{aligned}
F & =\int e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right) d x=\frac{1}{3} \int\left(3 x^{2} y+2 x y+y^{3}\right) d e^{3 x} \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{3} \int e^{3 x}(6 x y+2 y) d x \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{9} \int(6 x y+2 y) d e^{3 x} \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{9}(6 x y+2 y) e^{3 x}+\frac{1}{9} \int e^{3 x} \cdot 6 y d x \\
& =\frac{1}{9}\left(9 x^{2} y+6 x y+3 y^{3}-6 x y-2 y\right) e^{3 x}+\frac{2}{3} y \int e^{3 x} \cdot d x
\end{aligned}
$$

Example: Book Problem 2.6.25

- Integrate your new $\mathrm{M}(\mathrm{x}, \mathrm{y})$:

$$
\begin{aligned}
F & =\int e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right) d x=\frac{1}{3} \int\left(3 x^{2} y+2 x y+y^{3}\right) d e^{3 x} \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{3} \int e^{3 x}(6 x y+2 y) d x \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{9} \int(6 x y+2 y) d e^{3 x} \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{9}(6 x y+2 y) e^{3 x}+\frac{1}{9} \int e^{3 x} \cdot 6 y d x \\
& =\frac{1}{9}\left(9 x^{2} y+6 x y+3 y^{3}-6 x y-2 y\right) e^{3 x}+\frac{2}{3} y \int e^{3 x} \cdot d x \\
& =\frac{1}{9}\left(9 x^{2} y+3 y^{3}-2 y\right) e^{3 x}+\frac{2}{9} y e^{3 x}+\phi(y)
\end{aligned}
$$

Example: Book Problem 2.6.25

- Integrate your new $\mathrm{M}(\mathrm{x}, \mathrm{y})$:

$$
\begin{aligned}
F & =\int e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right) d x=\frac{1}{3} \int\left(3 x^{2} y+2 x y+y^{3}\right) d e^{3 x} \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{3} \int e^{3 x}(6 x y+2 y) d x \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{9} \int(6 x y+2 y) d e^{3 x} \\
& =\frac{1}{3}\left(3 x^{2} y+2 x y+y^{3}\right) e^{3 x}-\frac{1}{9}(6 x y+2 y) e^{3 x}+\frac{1}{9} \int e^{3 x} \cdot 6 y d x \\
& =\frac{1}{9}\left(9 x^{2} y+6 x y+3 y^{3}-6 x y-2 y\right) e^{3 x}+\frac{2}{3} y \int e^{3 x} \cdot d x \\
& =\frac{1}{9}\left(9 x^{2} y+3 y^{3}-2 y\right) e^{3 x}+\frac{2}{9} y e^{3 x}+\phi(y) \\
& =\frac{1}{3}\left(3 x^{2} y+y^{3}\right) e^{3 x}+\phi(y)
\end{aligned}
$$

Example: Book Problem 2.6.25

- Use $F_{y}(x, y)=N(x, y)$ to get $\phi(y)$:

Example: Book Problem 2.6.25

- Use $F_{y}(x, y)=N(x, y)$ to get $\phi(y)$:

$$
F_{y}(x, y)=\frac{1}{3}\left(3 x^{2}+3 y^{2}\right)+\phi^{\prime}(y)
$$

Example: Book Problem 2.6.25

- Use $F_{y}(x, y)=N(x, y)$ to get $\phi(y)$:

$$
F_{y}(x, y)=\frac{1}{3}\left(3 x^{2}+3 y^{2}\right)+\phi^{\prime}(y)=N(x, y)=x^{2}+y^{2}
$$

Example: Book Problem 2.6.25

- Use $F_{y}(x, y)=N(x, y)$ to get $\phi(y)$:

$$
\begin{aligned}
& F_{y}(x, y)=\frac{1}{3}\left(3 x^{2}+3 y^{2}\right)+\phi^{\prime}(y)=N(x, y)=x^{2}+y^{2} \\
\Rightarrow & \phi^{\prime}(y)=0
\end{aligned}
$$

Example: Book Problem 2.6.25

- Use $F_{y}(x, y)=N(x, y)$ to get $\phi(y)$:

$$
\begin{aligned}
& F_{y}(x, y)=\frac{1}{3}\left(3 x^{2}+3 y^{2}\right)+\phi^{\prime}(y)=N(x, y)=x^{2}+y^{2} \\
\Rightarrow & \phi^{\prime}(y)=0
\end{aligned}
$$

So just take $\phi(y)=0$.

Example: Book Problem 2.6.25

- Use $F_{y}(x, y)=N(x, y)$ to get $\phi(y)$:

$$
\begin{aligned}
& F_{y}(x, y)=\frac{1}{3}\left(3 x^{2}+3 y^{2}\right)+\phi^{\prime}(y)=N(x, y)=x^{2}+y^{2} \\
\Rightarrow & \phi^{\prime}(y)=0
\end{aligned}
$$

So just take $\phi(y)=0$.

- Writ the final solution:

Example: Book Problem 2.6.25

- Use $F_{y}(x, y)=N(x, y)$ to get $\phi(y)$:

$$
\begin{aligned}
& F_{y}(x, y)=\frac{1}{3}\left(3 x^{2}+3 y^{2}\right)+\phi^{\prime}(y)=N(x, y)=x^{2}+y^{2} \\
\Rightarrow & \phi^{\prime}(y)=0
\end{aligned}
$$

So just take $\phi(y)=0$.

- Writ the final solution:

$$
\frac{1}{3}\left(3 x^{2} y+y^{3}\right) e^{3} x=C
$$

Example: Book Problem 2.6.25

- Use $F_{y}(x, y)=N(x, y)$ to get $\phi(y)$:

$$
\begin{aligned}
& F_{y}(x, y)=\frac{1}{3}\left(3 x^{2}+3 y^{2}\right)+\phi^{\prime}(y)=N(x, y)=x^{2}+y^{2} \\
\Rightarrow & \phi^{\prime}(y)=0
\end{aligned}
$$

So just take $\phi(y)=0$.

- Writ the final solution:

$$
\frac{1}{3}\left(3 x^{2} y+y^{3}\right) e^{3} x=C
$$

or to make it neater:

Example: Book Problem 2.6.25

- Use $F_{y}(x, y)=N(x, y)$ to get $\phi(y)$:

$$
\begin{aligned}
& F_{y}(x, y)=\frac{1}{3}\left(3 x^{2}+3 y^{2}\right)+\phi^{\prime}(y)=N(x, y)=x^{2}+y^{2} \\
\Rightarrow \quad & \phi^{\prime}(y)=0
\end{aligned}
$$

So just take $\phi(y)=0$.

- Writ the final solution:

$$
\frac{1}{3}\left(3 x^{2} y+y^{3}\right) e^{3} x=C
$$

or to make it neater:

$$
3 x^{y}+y^{3}=C e^{-3 x}
$$

Graded Homework Problem: 2.6.8.

See if the ODE

$$
\left(e^{x} \sin y+3 y\right)-\left(3 x-e^{x} \sin y\right) y^{\prime}=0
$$

is exact.

Graded Homework Problem: 2.6.8.

See if the ODE

$$
\left(e^{x} \sin y+3 y\right)-\left(3 x-e^{x} \sin y\right) y^{\prime}=0
$$

is exact.

- Just make sure you don't make mistakes on taking M and N :

Graded Homework Problem: 2.6.8.

See if the ODE

$$
\left(e^{x} \sin y+3 y\right)-\left(3 x-e^{x} \sin y\right) y^{\prime}=0
$$

is exact.

- Just make sure you don't make mistakes on taking M and N :

$$
M=e^{x} \sin y+3 y
$$

Graded Homework Problem: 2.6.8.

See if the ODE

$$
\left(e^{x} \sin y+3 y\right)-\left(3 x-e^{x} \sin y\right) y^{\prime}=0
$$

is exact.

- Just make sure you don't make mistakes on taking M and N :

$$
\begin{aligned}
& M=e^{x} \sin y+3 y \\
& M_{y}=e^{x} \cos y+3
\end{aligned}
$$

Graded Homework Problem: 2.6.8.

See if the ODE

$$
\left(e^{x} \sin y+3 y\right)-\left(3 x-e^{x} \sin y\right) y^{\prime}=0
$$

is exact.

- Just make sure you don't make mistakes on taking M and N :

$$
\begin{aligned}
& M=e^{x} \sin y+3 y \\
& M_{y}=e^{x} \cos y+3 \\
& N=-3 x+e^{x} \sin y
\end{aligned}
$$

Graded Homework Problem: 2.6.8.

See if the ODE

$$
\left(e^{x} \sin y+3 y\right)-\left(3 x-e^{x} \sin y\right) y^{\prime}=0
$$

is exact.

- Just make sure you don't make mistakes on taking M and N :

$$
\begin{aligned}
& M=e^{x} \sin y+3 y \\
& M_{y}=e^{x} \cos y+3 \\
& N=-3 x+e^{x} \sin y \\
& N_{x}=-3+e^{x} \sin y
\end{aligned}
$$

Graded Homework Problem: 2.6.8.

See if the ODE

$$
\left(e^{x} \sin y+3 y\right)-\left(3 x-e^{x} \sin y\right) y^{\prime}=0
$$

is exact.

- Just make sure you don't make mistakes on taking M and N :

$$
\begin{aligned}
& M=e^{x} \sin y+3 y \\
& M_{y}=e^{x} \cos y+3 \\
& N=-3 x+e^{x} \sin y \\
& N_{x}=-3+e^{x} \sin y
\end{aligned}
$$

So it's not exact.

Graded Homework Problem: 2.6.8.

See if the ODE

$$
\left(e^{x} \sin y+3 y\right)-\left(3 x-e^{x} \sin y\right) y^{\prime}=0
$$

is exact.

- Just make sure you don't make mistakes on taking M and N :

$$
\begin{aligned}
& M=e^{x} \sin y+3 y \\
& M_{y}=e^{x} \cos y+3 \\
& N=-3 x+e^{x} \sin y \\
& N_{x}=-3+e^{x} \sin y
\end{aligned}
$$

So it's not exact.

- For this equation,

Graded Homework Problem: 2.6.8.

See if the ODE

$$
\left(e^{x} \sin y+3 y\right)-\left(3 x-e^{x} \sin y\right) y^{\prime}=0
$$

is exact.

- Just make sure you don't make mistakes on taking M and N :

$$
\begin{aligned}
& M=e^{x} \sin y+3 y \\
& M_{y}=e^{x} \cos y+3 \\
& N=-3 x+e^{x} \sin y \\
& N_{x}=-3+e^{x} \sin y
\end{aligned}
$$

So it's not exact.

- For this equation, you won't be able to find an appropriate integrating factor

Graded Homework Problem: 2.6.8.

See if the ODE

$$
\left(e^{x} \sin y+3 y\right)-\left(3 x-e^{x} \sin y\right) y^{\prime}=0
$$

is exact.

- Just make sure you don't make mistakes on taking M and N :

$$
\begin{aligned}
& M=e^{x} \sin y+3 y \\
& M_{y}=e^{x} \cos y+3 \\
& N=-3 x+e^{x} \sin y \\
& N_{x}=-3+e^{x} \sin y
\end{aligned}
$$

So it's not exact.

- For this equation, you won't be able to find an appropriate integrating factor with the method you learned.

Graded Homework Problem: 2.6.8.

See if the ODE

$$
\left(e^{x} \sin y+3 y\right)-\left(3 x-e^{x} \sin y\right) y^{\prime}=0
$$

is exact.

- Just make sure you don't make mistakes on taking M and N :

$$
\begin{aligned}
& M=e^{x} \sin y+3 y \\
& M_{y}=e^{x} \cos y+3 \\
& N=-3 x+e^{x} \sin y \\
& N_{x}=-3+e^{x} \sin y
\end{aligned}
$$

So it's not exact.

- For this equation, you won't be able to find an appropriate integrating factor with the method you learned. There might be other ways to find something

Graded Homework Problem: 2.6.8.

See if the ODE

$$
\left(e^{x} \sin y+3 y\right)-\left(3 x-e^{x} \sin y\right) y^{\prime}=0
$$

is exact.

- Just make sure you don't make mistakes on taking M and N :

$$
\begin{aligned}
& M=e^{x} \sin y+3 y \\
& M_{y}=e^{x} \cos y+3 \\
& N=-3 x+e^{x} \sin y \\
& N_{x}=-3+e^{x} \sin y
\end{aligned}
$$

So it's not exact.

- For this equation, you won't be able to find an appropriate integrating factor with the method you learned. There might be other ways to find something but it's not required in this course

Graded Homework Problem: 2.6.8.

See if the ODE

$$
\left(e^{x} \sin y+3 y\right)-\left(3 x-e^{x} \sin y\right) y^{\prime}=0
$$

is exact.

- Just make sure you don't make mistakes on taking M and N :

$$
\begin{aligned}
& M=e^{x} \sin y+3 y \\
& M_{y}=e^{x} \cos y+3 \\
& N=-3 x+e^{x} \sin y \\
& N_{x}=-3+e^{x} \sin y
\end{aligned}
$$

So it's not exact.

- For this equation, you won't be able to find an appropriate integrating factor with the method you learned. There might be other ways to find something but it's not required in this course (at least I don't know any).

The End

